skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gai, Boju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Inverted metamorphic (IMM) multijunction solar cells represent a promising material platform for ultrahigh efficiency photovoltaic systems (UHPVs) with a clear pathway to beyond 50% efficiency. The conventional device processing of IMM solar cells, however, typically involves wafer bonding of a centimeter‐scale die and destructive substrate removal, thereby imposing severe restrictions in achievable cell size, type of module substrate, spatial layout, as well as cost effectiveness. Here, we report material design and fabrication strategies for microscale triple‐junction IMM (3J IMM) Ga0.51In0.49P/GaAs/In0.26Ga0.74As solar cells that can overcome these difficulties. Specialized schemes of delineation and undercut etching enable the defect‐free release of microscale IMM solar cells and printed assemblies on a glass substrate in a manner that preserves the growth substrate, where efficiencies of 27.3% and 33.9% are demonstrated at simulated AM1.5D one‐ and 351 sun illumination, respectively. A composite carrier substrate where released IMM microcells are formed in fully functional, print‐ready configurations allows high‐throughput transfer printing of individual IMM microcells in a programmable spatial layout on versatile choices of module substrate, all desired for CPV applications. 
    more » « less